

Spring Grazing Management

James Daniel – Precision Grazing

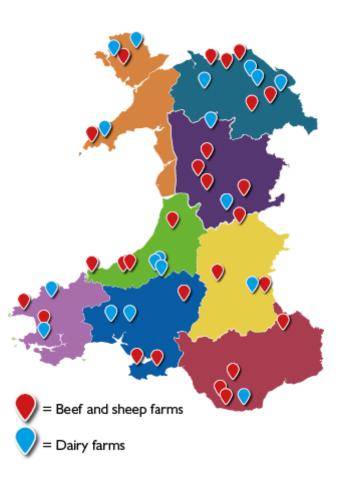
Philip Pengelly – Penwith Landscape Partnership

Spring Grazing Management

Spring Grazing

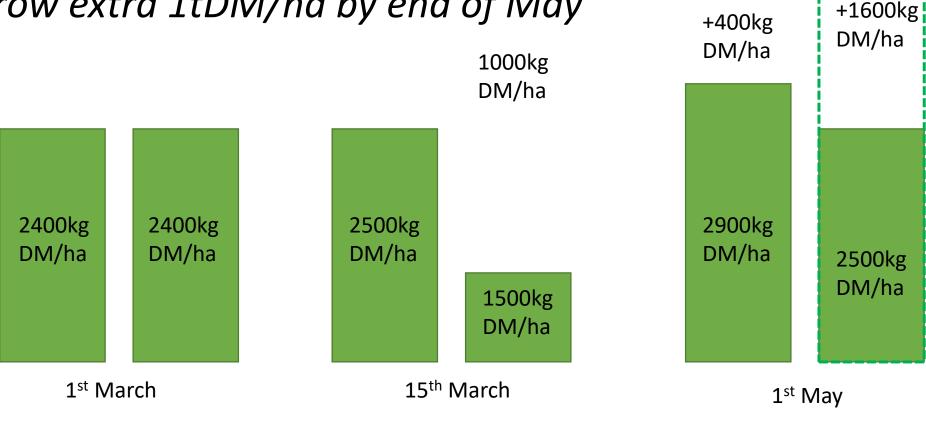
Aims

- Graze whole farm by end of April.
- Transition stock to pasture ready for Peak Growth.
- Build/Manage grass wedge.

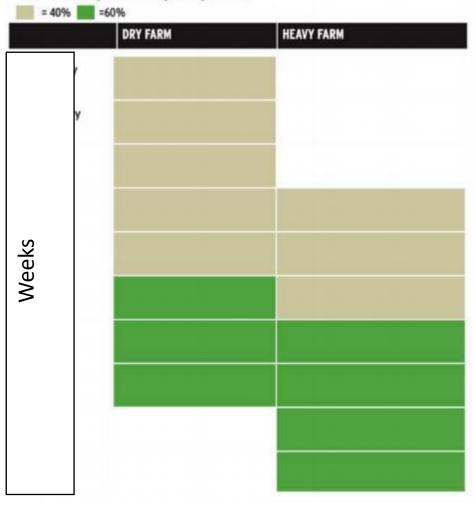

Benefits

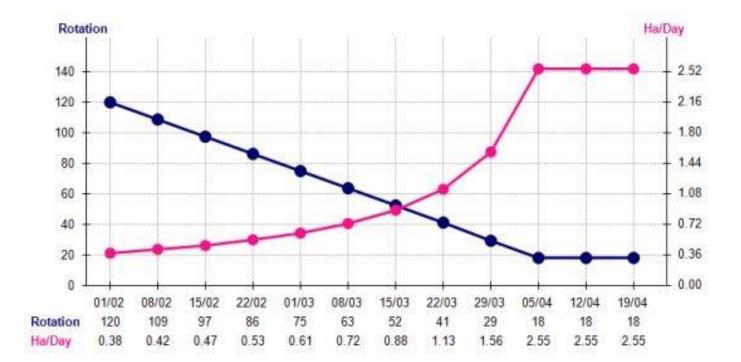
- Grazing stimulates Grass Growth
- Increased animal performance high quality diet
- Improve quality
- Increase tillering
- Build a grass wedge for 2nd round
- Reduce workload
- Reduce cost

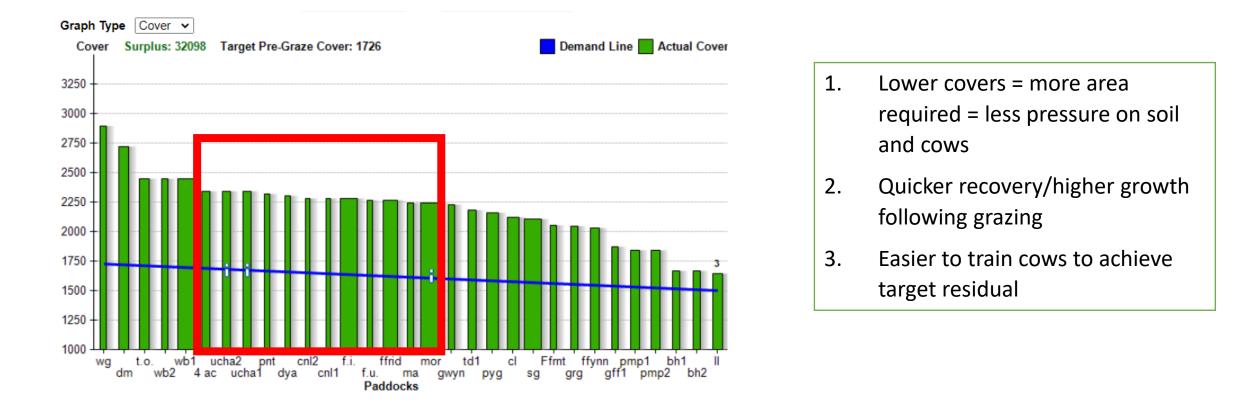
Pasture Quality


	8	March				
Group	Region 🖵	ME% -	Protein % -	DM %		
Dairy	6	~				
Dairy	1	12.9	30.5	22.1		
Beef and Sheep	1	13	26.6	24.2		
Dairy	2	12.4	23.8	21.6		
Beef and Sheep	2	12.1	23.2	27.7		
Dairy	3	12.9	26.8	22.2		
Beef and Sheep	6					
Beef and Sheep	3	13.1	22.3	24.7		
Beef and Sheep	4	11.9	32.3	16.7		
Beef and Sheep	5	12.9	27.8	17.6		
Dairy	4	12.4	28.7	15.7		
Dairy	5	13	25.3	21.9		
Beef and Sheep	7	12.4	26.1	22.8		
Dairy	7	12.5	24.3	19.4		
Dairy	8	12.4	28.9	19.7		
Beef and Sheep	8	12.6	21.8	23.7		
	10					
Average		12.6	26.3	21.4		

3/30/2022


Rules of Thumb


Pasture Grazed by Middle to End of April will grow extra 1tDM/ha by end of May


Turnout during the main grazing season

Spring – Measure grass - Graze Mid Wedge

Cows

- Lactating animals are the highest priority on farm, they should be fed to appetite (where possible).
- It is key that they are "fully fed" up to and at peak lactation (6 weeks post calving).
- Milk produced at peak sets the total volume of milk produced in that lactation
 - Effects annual milk yield per cow / weaning weight of calve.
 - Genetic Potential
- This means maintaining a minimum average pasture height of 10cm. (2400kgDM/ha)

Or

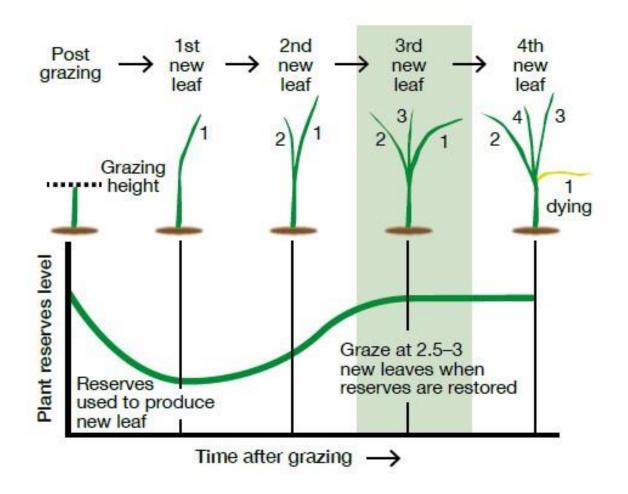
- Grazing covers between 2800-3400kgDM/ha down to 1500-1700kgDM/ha
 - 1ha = 100 cows for 24h
- Beef breeds can reach their peak yield from forage alone.
 - Concentrate feed only justified is when pasture quantity is in-sufficient.
- For some dairy breeds concentrate feed may be justified if the yield response is high.
 - Check the return on investment.

Ewes

Ewes

- Lactating animals are the highest priority on farm, they should be fed to appetite (where possible).
- It is key that they are "fully fed" up to and at peak lactation (3 weeks post lambing).
- Milk produced at peak sets the total volume of milk produced in that lactation
 - Effects total weight of lamb weaned per ewe.
 - Genetic Potential
- This means maintaining a minimum average pasture height of 6cm. (1800kgDM/ha)
- Concentrate feed only justified if the pasture height drops below target.

Growing Cattle


Growing Cattle

- Growing/finishing cattle or replacement heifers.
- Aim to transition them to pasture so their rumen is fully adjusted before peak pasture growth arrives (May).
 - This means these animals can be fed ad-lib, consuming as much of the low-cost pasture as possible to efficiently convert it into liveweight gain at a very low cost.
- To aid transition process step-down any concentrate feeding over a period of 4 weeks towards 0kg
- Allow the animals time to adjust by letting them out to graze by day and in by night.
- Concentrate feeding at pasture to native breeds (pure or dairy cross) or replacement heifers is not recommended due to current feed cost.
 - Instead, the focus must be on grazing management.
- For continental breeds feeding a source of high energy i.e., grain might be required during the finishing phase to achieve suitable fat cover to meet specification.

- How long animals spend in one field is the single factor which has the greatest influence on the amount of pasture grown (tonnes Dry Matter per Hectare).
- Moving animals to a new field more often provides the plants with a rest between grazing events, this allows them time to replenish their energy reserves and re-grow ready for the next grazing event.

- Moving from set-stocking to rotational grazing can increase the total pasture grown by 4tDM/ha and pasture utilised (eaten) by 3.3tDM/ha!
- This is equivalent to applying 220kgN/ha (5 bags/acre) at a cost of £410/ha (£160/Acre)*.

Grazing Management Technique	No of Days / Paddock	Annual Yield (tDM/ha)	Utilisati on (%)	Pasture Utilised (tDM/h a)	% Increase (from Set Stocking)
Set Stocking	30+	6	50%	4.3	0%
Continuous					
(Variable)	10-20	8.5	60%	5.1	20%
Rotational					
Grazing	3-6	10.2	75%	7.6	56%
Adaptive Multi- Paddock Grazing	1-2	10.2	80%	8.2	92%

Source: AHDB. 2020. Planning Grazing Strategies for Better Returns. Available online: <u>https://ahdb.org.uk/knowledge-library/planning-grazing-strategies-for-better-returns</u>

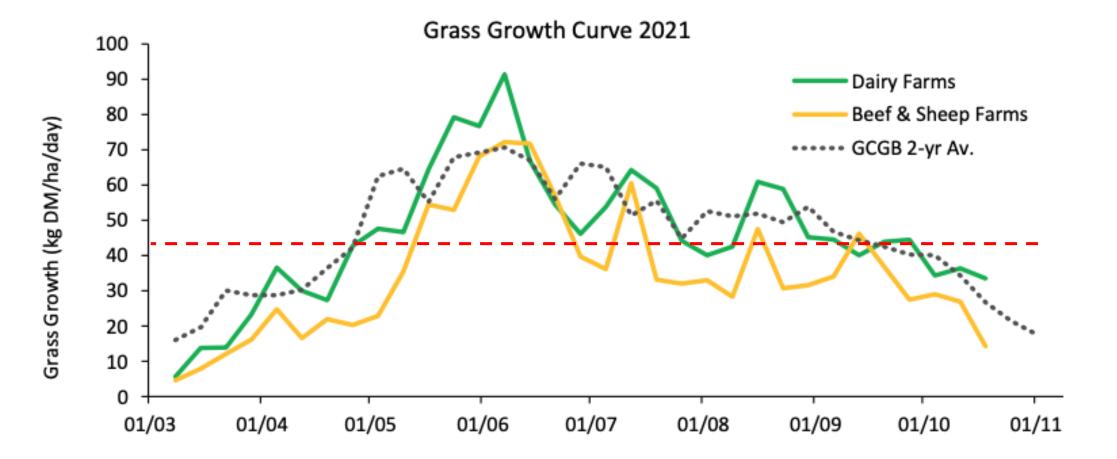
- Each group of animals needs to have access to a minimum of 5 fields or paddocks.
- The field should have a water supply and secure boundary.
- If the group cannot graze a field down to a suitable height within 6 days, the field should be split in half or as required with temporary electric fencing (or other materials).
- If you don't have enough fields then consider combining groups of animals together or dividing more fields in half.

- On-Time 1-5 days
- Rest Period 20-45 days
- No of Fields/Paddocks (per group of animals)
 - Minimum: 4-6
 - Ideal: 8-10
 - Perfect: 12-16
- Field/Paddock Size (Max) = Area which can be eaten in 5 days with the group of animals
 - Increase by increasing the number of animals in the group
 - Can graze sheep and cattle to achieve larger groups ("Flerd")

Rest Period (Days) = (No of paddocks x On-time) – On-time

		Nu	Number of Paddocks/Fields (Per Group)						
		4	4 6 8 10 12 14 16						
	1								
ys)	2				18	22	26	30	
(Days)	3			21	27	33	39	45	
ne	4		20	28	36	44	52	60	
Time	5	15	25	35	45	55	65	75	
On	6	18	30	42	54	66	78	90	
	7	21	35	49	63	77	91	105	

Rest Period						
Spring/Summer						
Dry Summer/Early Spring						
/Autumn						
Autumn/Winter						


Rest Period (Days) = (No of paddocks x On-time) – On-time

		Nu	Number of Paddocks/Fields (Per Group)					
		4	6	8	10	12	14	16
1								
ys)	2	-			18	22	26	30
(Days)	3	21 27 33 39						45
ne	4		20	28	36	44	52	60
Time	5	15	25	35	45	55	65	75
On	6	18	30	42	54	66	78	90
	7	21	35	49	63	77	91	105

Rest Period					
Spring/Summer					
Dry Summer/Early Spring					
/Autumn					
Autumn/Winter					

Area Required for a group of animals?

Pasture Growth (kg DM/ha)	Ewes/ha	Ewes/acre	Suckler cows/ha	Suckler cows/acre	Growing cattle/ha	Growing cattle/acre	LSU/ha
12	5	2	0.8	0.3	1.8	0.7	0.6
16	7	3	1.1	0.4	2.4	1.0	0.8
20	9	4	1.3	0.5	2.9	1.2	1
24	11	4	1.6	0.6	3.5	1.4	1.2
28	13	5	1.9	0.8	4.1	1.7	1.4
32	15	6	2.1	0.9	4.7	1.9	1.6
36	16	7	2.4	1.0	5.3	2.1	1.8
40	18	7	2.7	1.1	5.9	2.4	2
44	20	8	2.9	1.2	6.5	2.6	2.2
48	22	9	3.2	1.3	7.1	2.9	2.4
52	24	10	3.5	1.4	7.6	3.1	2.6

Nitrogen

Soil Health

- Soil Testing (Full Mineral)
- PH Correction
- Soil Structure Assessment & Correction
- P&K Correction

Fertiliser

- Artificial N timing, rates
- Slurry Management, timing and rates
- Foliar Application of N

Grazing Management

- Reduce on-time per paddock (don't eat the re-growth)
- Appropriate rest periods
- Worth 1000-3000kgDM/ha/year (more than most people were growing with N fert!)

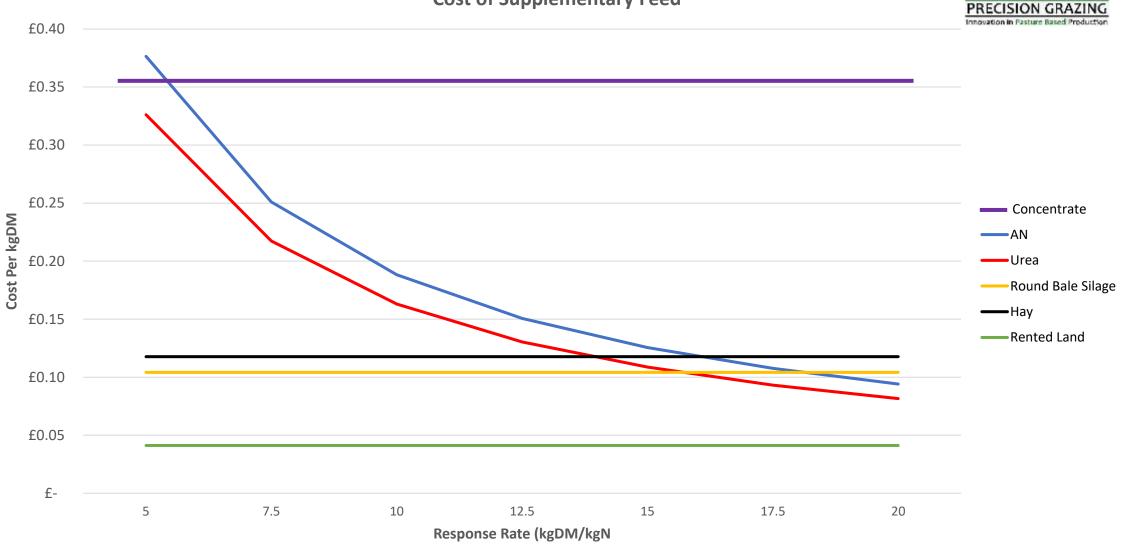
Farm Business

- Assessment of farm stocking rate and feed demand (kgDM/ha) compared to natural production potential of land.
- Removal of animals not performing
- Reduction in stocking rate (sell trading stock)
- Review of Alternative fodder sources (rent land, buy silage bales)

- Return on Investment linked to Response Rate
- For artificial nitrogen to provide an economic return at current prices the response rate (kgDM grown per kgN applied) needs to be better than 12.5:1.

Pasture growth rate	Pasture growth (kg DM/ha/day	Response (kg DM/ kg N)	Time for full response (weeks)
Slow	10	5	10 - 14
Moderate	20 – 40	10	6 – 8
Fast	50 -70	15	5 - 6
Rapid	80	20	3 – 4

To achieve this requires good conditions:


- New or Improved Leys
- PH>6
- P&K Index 2 or above
- Soil temperature above 8 degrees
- <u>Apply</u> what the plant needs.

Recommended application rates based on soil temperature are:

- 8-10°C Max 20kgN/Ha
- 10-12°C Max 30kgN/Ha
- >12°C Max 40-50kgN/Ha

	Cost (£/kgDM)		
Response Rate (kgDM/kgN)		AN	Urea	
5	£	0.38	£	0.33
7.5	£	0.25	£	0.22
10	£	0.19	£	0.16
12.5	£	0.15	£	0.13
15	£	0.13	£	0.11
17.5	£	0.11	£	0.09
20	£	0.09	£	0.08

Cost of Supplementary Feed

- You can measure soil temperature using a garden thermometer.
- Best time to measure is 10am from a representative part of the field at depth of 100mm (4").
- It is also recommended to leave a strip un-spread to assess the impact the application had.
- If pasture is measured using a plate meter the strip can be used as a "control" area to calculate the actual benefit.

With nitrogen, as with all farm inputs in 2022 ask yourself - "if I use this input, what will my return on investment be?"

James Daniel – Precision Grazing 07534930484 – <u>info@precisiongrazing.com</u>

Philip Pengelly – Penwith Landscape Partnership 07976731376 - <u>philip.pengelly@cornwallwildlifetrust.org.uk</u>